
Math Modeling, Week 2 
 
1. Show that probability matching is a special case of Luce choice. That is, consider a task with 
two actions, A and B, exactly one of which is correct on each trial. Probability matching means 
making a prediction P(A) for the probability that A will be correct, and choosing actions with 
probabilities Pr[a = A] = P(A) and Pr[a = B] = 1 – P(A). (This is what the simulation from last 
week did.) Assuming a reward of 1 for being correct and 0 for being incorrect, work out the 
expected rewards for both actions according to P(A), and then derive the action probabilities 
given by the Luce choice rule. If you’re enjoying this, work out the action probabilities for 
softmax, and for Luce and softmax under different reward values for right/wrong (instead of 
1/0). 
 
Expected reward under action A 

E[R|a=A] = SrPr[R=r|a=A]×r = Pr[R=0|a=A]×0 + Pr[R=1|a=A]×1 = (1-P(A))×0 + P(A)×1 = P(A) 
 
Expected reward under action B 

E[R|a=B] = SrPr[R=r|a=B]×r = Pr[R=0|a=B]×0 + Pr[R=1|a=B]×1 = P(A)×0 + (1-P(A))×1 = 1-P(A) 
 
Luce choice 

Pr[a=A] = E[R|a=A]/(E[R|a=A]+E[R|a=B]) = P(A)/(P(A)+1-P(A)) = P(A) 
Therefore Luce choice produces probability-matching behavior. 
 
Softmax 
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This is a logistic function of P(A), meaning the logodds of the response is a linear function of 
P(A) with intercept at ½ (i.e. Pr[a=A]=½ when P(A)=½) and slope 2/T. 
 
Generic reward values 
If the rewards are r for correct and w for incorrect, then following the calculations above yields 

E[R|a=A] = w + (r-w)×P(A), E[R|a=B] = r + (w-r)×P(A) 

Luce: Pr[a=A] = ;<(=7;)3(-)
=<;

 

Softmax: Pr[a=A] = 6
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2. Special cases of state-value learning (DV(st) = e[Rt + gV(st+1) – V(st)]) 
(a) What happens when g = 0? How does the model compare to the simpler model from last 
week? 
 



Future rewards are ignored, and the model learns only about immediate rewards. In that sense it 
corresponds to the simple RL model from Week 1 (except that there’s separate learning for each 
state). 

DV(st) = e[Rt – V(st)] 
 
(b) What happens when there’s only one state? Write a simplified version of the learning rule for 
that case. What does the value converge to, i.e. when is it in equilibrium? 
 
If there’s only one state, we can call it s and drop the t and t+1 subscripts: 

DV(s) = e[Rt + gV(s) – V(s)] = e[Rt – (1-g)V(s)] = (1-g)e[Rt/(1-g) – V(s)] 

Therefore we can think of V(s) learning to approximate R/(1-g), with a learning rate (1-g)e. 
 
(c) For the one-state case, define a new variable W = (1-g)V. How does W behave? 
 
It’s important to realize we’re not changing the model. We’re just describing it with different 
parameters (W instead of V). Building on the derivation above, we have 

DW = (1-g)×DV = (1-g)e[Rt – (1-g)V] = (1-g)e[Rt – W] 

Therefore W learns to approximate R (the immediate reward), with a learning rate (1-g)e. 
 
3. Think of some ways to make the Q-learner smarter in the Gridworld task. If you can, 
implement one and try it out. 
 
Simulated annealing 
Reduce the temperature over time. This lets the agent explore more early on when knowledge is 
weak and exploit more later once it’s expert at the task. One neat property of Q-learning is that it 
learns the action values for optimal (exploit-only) behavior, even while the agent is exploring. 
(This is because of the max operator for the next action, in the update rule for Q.) Thus under 
simulated annealing the agent is learning the same Q values the whole time, even though the 
response rule is changing. 
 
State generalization 
Nearby states are likely to have similar state and action values. Therefore, rather than updating 
the Q values only for the state that was experienced, the agent could update Q values for 
surrounding states as well (with a smaller learning rate). This generalization leads experience to 
be pooled across neighboring states, thus speeding learning. 
 
Multistep backups 
Rather than updating the Q values for just the most recent state, the agent could update for earlier 
states as well (using smaller learning rates). This strategy goes under the name eligibility traces, 
because past states have something like a memory trace that keeps them eligible for learning. 
Under this strategy, when a sequence of actions leads to prediction error, all actions in the 
sequence can be learned about, rather than just the final action. 


